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A variety of structurally fascinating and biologically active
natural products can be obtained from marine sources. The
isolation, structural formulation, and biological evaluation of
natural products from the aquatic biomass constitutes a frontier
of growing importance in chemistry. In some instances, where Figure 1.
the structures are especially novel or the biological profiles of
action hold particular promise, a program in total synthesis may Scheme %

be appropriate. We felt that such a situation pertained in the case o (\o

of dysidiolide (1), a sesterterpene isolated from the marine sponge = j a o R
Dysidea etheriale Laubenfeld. From a biogenetic point of view, Me " \ . |
structurel corresponds to a novel cyclization mode of an acyclic NGOLEL Me

Cys isoprenoid precursor. Moreover, the difficultly available : b [ 7 R=COH
dysidiolide is a potent inhibitor of the human cdc25A protein 8 R = CH,0Si'BuPh,

phosphatase? Since this class of enzymes (cdc25A, B and C)
is involved in dephosphorylation of cyclin-dependent kinases, it d
has been proposed that inhibitors could produce specific cell cycle R Me LiO
arrest. Early results have shown that dysidiolide inhibits growth 9 R=COLE!
of lung carcinoma and murine leukemia cell lifes. C[

We approached the total synthesis problem from the perspective 10 R=CHl 12 ,[ 18 X =0T
of testing a dioxolenium (Gassman) type of activated dienophile 14 X = CH=CH,
(Figure 1)** We hoped to study a DietsAlder reaction of the aReagents and conditions: (a) MRiLi, E4O, —45 °C; ICH,COEL,
type 2 + 4, wherein the presumed mechanistically active HMmPA, =55 °C to rt (30-55%). (b) Superhydride, THF;78 to —20
intermediate §) would undergo cycloaddition in the regiosense °C; imidazole, TBDPSCE-20°C to rt (68%). (c) i. LAH, E$O; ii. TsCl,
indicated, and with tight diastereoface governance based onpyridine, 0°C; iii. Nal, acetoneA (92% overall). (d) DME, HMPA,
differing demands of Rand R. Most interesting was the matter ~ —55°C to 1t (49%). (e) TfO, 2,6-ditert-butyl-4-methylpyridine, CCl
of endo/exo selectivity. To reach it would be necessary for ~ (87%). () CH=CHSnBuw, Pd(PPB)s, LiCl, THF, A (80%).
the dioxolenium function o8 to direct endo in the DietsAlder

step*526 The realization of this line of thinking is described below
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Scheme 2 a 77% yield of dysidiolide identical in all respects with the natural
product by chromatographic and high-field NMR critetiaAs
is the case with the natural product, dysidiolide, in solution, exists
as a mixture of g diastereomers. Upon crystallization, this
carbon emerges in the relative configuration shédwn.

The power of the Gassman dioxolenium dienophile method is
underscored by the fact that trisubstituted analogu@s loéaring

Me 15 R:Hc;"] : X = H; OTBDPS ester dienophiles instead of the acetal, were ineffective in the
8 &, 2 b E 16 R=CHO: X = H; OTBDPS Diels—Alder reaction. We also note that high selectivity for endo
TBDPSO L. addition was observed when a dioxane acetalZyf2-methyl-

[o]
d 1; 2;m::;g o 2-butenal was used as the dienophile in a Diéliler reaction

with diene14. The adduct from this reaction was elaborated,
Me e Me leading to “dysidiolides” stereoisomeric withat carbons 6 and

7. The synthesis and evaluation of these stereo analogues will
be the subject of future disclosures.

With dysidiolide available to us through a concise total
synthesis (albeit for the moment as the racemate), we have begun
to investigate its biological profile. Indeed, within 24 h, dsyidi-

. olide (2-50uM) caused growth arrest on four human cancer cell
19 +Cyepimer lines. In PC3, TSU-Pr1, and DU145 prostate cancer cells, growth

\,/ arrest was accompanied by massive apoptosis. In the MCF7

2 Reagents and conditions: (a) TMSOTY, @, —90 °C (67%). (b) breast cancer cell line, the drug caused loss of thideak

1 dysidiolide

Montmorillonite K 10, CHCI, (89%). (c) BNNH,, KO'Bu, n-butanol, and accumulation of cells in G These data are consistent with
sealed tube, 150C (74%). (d) TPAP, NMO, ms, C¥Cl, (90%). (e) the induction by dysidiolide of cell cycle specific growth arrest
3-Lithiofuran, THF, =78 °C (34% + 56% C4 epimer). (f) i.p- followed by apoptosisa form of programmed cell deattin
Nitrobenzoic acid, P§P, DEAD, benzene; ii. DIBAL, CkCl,, 0°C (81% human cancer cells. At the chemical level, we are now attempting
overall). (g) Q, Rose Bengal, DIPEA, Ci€l;, hw, =78 °C (77%). to obtain ketonel2, or a functionally equivalent congener, in

optically pure form, in a straightforward manner so as to pave
to known iodidel0 as described. This compound served as an the way for the synthesis of enantiomerically pure dysidiolide.
alklylating agent with respect to the lithium enolate of 2-meth- Also, studies are currently in progress to ascertain the specificity
ylcyclohexanonel(1)!° giving rise, albeit thus far in modest yield, of the biological target of dysidiolide and to pin down its effects
to ketonel2!! This substance was converted to vinyl triflate on cell cycle progression and cytotoxicity in detail. Results in
13'2 and then, by a Stille cross couplifgto dienel4. both areas will be described in due course.
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